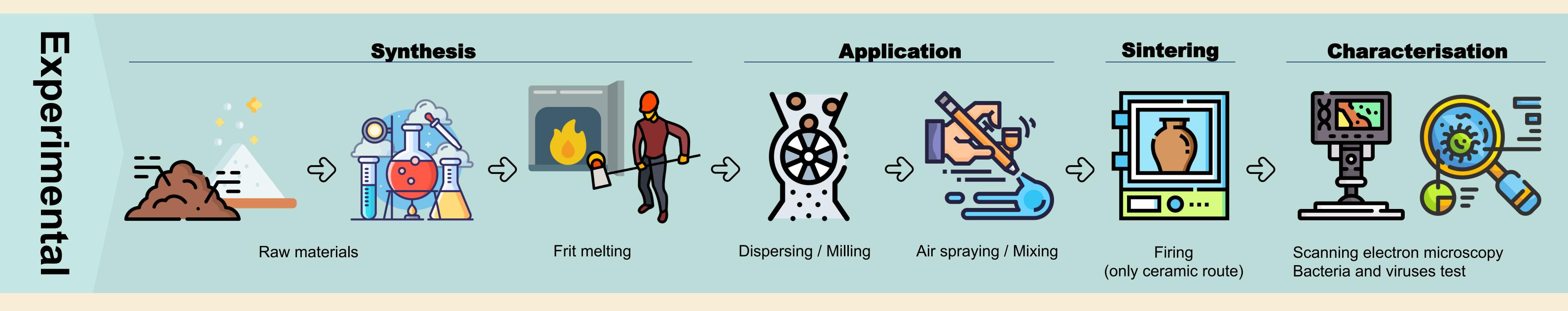
# **Obtaining bactericide and viricide surfaces**


## UNIVERSITAT INSTITUTO TECNOLÓGICO

A. Belda<sup>1</sup>, V.Carnicer<sup>1</sup>, M.D. Palacios<sup>1</sup>, M.J. Orts<sup>1</sup>, S. Mestre<sup>1</sup>, E. Cañas<sup>1</sup>, M.C. Segura<sup>2</sup>, S. Ibiza<sup>3</sup>

<sup>1</sup>Instituto Universitario de Tecnología Cerámica (IUTC), Universitat Jaume I (UJI), Castellón, Spain <sup>2</sup> Vernis S.A. Avda. Manuel Escobedo, 18 12200, Onda (Castellón), Spain <sup>3</sup> AIDIMME, C/ Benjamín Franklin, 13 46980, Paterna (Valencia), Spain

Since the COVID'19 pandemic, there has been a great interest in surfaces cleaning, especially in enclosed areas where many people gather, such as workplaces, shopping centres, restaurants, etc., because virus can be spread if someone touches an infected surface or object. Moreover, without cleaning and disinfection, the COVID'19 virus can remain on surface object from hours to days.

The main objective of this work was to obtain new antiseptic substances against bacteria and viruses, which are incorporated in different materials, such as ceramic tiles and coatings (varnishes or paints). For this purpose, some silicate glasses have been developed based on the system SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub>-RO<sub>2</sub>-RO (R<sub>2</sub>O corresponds to the combination of Na<sub>2</sub>O, K<sub>2</sub>O and Ag<sub>2</sub>O, while RO corresponds to CaO, MgO, BaO and ZnO), which incorporate Ag<sub>2</sub>O to partially replace Na<sub>2</sub>O.



## **Ceramic route**

Synthesis: F1 glass (frit) was obtained in a melting kiln at a maximum temperature of 1500°C for 20 minutes, followed by quenching in cold water.

**Sintering:** The glaze C1 was fired in laboratory (left) and industrial kilns (right), in order to compare the reproducibility and scalability of the process.

**Application:** The preparation of the C1 glaze was carried out by traditional ceramic milling. Glaze C1 was applied by air spraying on the surface of wall tiles at a density of 1.4 g/cm<sup>3</sup> until a weight of 160 g/



| Compo               | osition          | Glaze           | C1    |  | Bacterial and       | viruses test      |
|---------------------|------------------|-----------------|-------|--|---------------------|-------------------|
| (wt%)               | F1               | Oxides          | (wt%) |  | Industrially fir    | ed glaze C1       |
| SiO <sub>2</sub>    | 51.3             | F1              | 85.0  |  | E. Coli             | 99.99             |
| $AI_2O_3$           | 13.7             | $RO_2 - R_2O_3$ | 10.0  |  | S. Aureus           | 99.81             |
| $R_2O^*$            | 5.0              |                 |       |  |                     | 00.20             |
| RO                  | 30.0             | RO              | 5.0   |  | TGEV*               | 99.30             |
| * <b>≈</b> 5 wt% Ag | y <sub>2</sub> O |                 |       |  | *Transmissible gast | roenteritis virus |

| Bacterial and viruses test  |  |  |  |  |  |
|-----------------------------|--|--|--|--|--|
| Industrially fired glaze C1 |  |  |  |  |  |
| E. Coli 99.99               |  |  |  |  |  |

Coating C2

Laboratory firing

| Bacterial and viruses test  |       |  |  |  |  |
|-----------------------------|-------|--|--|--|--|
| Industrially fired glaze C1 |       |  |  |  |  |
| E. Coli                     | 99.99 |  |  |  |  |

Industrial firing

#### m<sup>2</sup> was reached.

| S. Aureus |   | 95.44 | 4 |
|-----------|---|-------|---|
| TGEV*     |   |       |   |
|           | _ |       |   |

Vernis

liber*fusta* 

\*Transmissible gastroenteritis virus

Coating C3

# **Organic coating route**

**Synthesis:** Frits (F2 and F3 glasses) were obtained in a melting kiln at a maximum temperature of 1450°C, followed by quenching in cold water.

**Application:** Frits were finely milled to increase the surface area of the particles. The preparation of the coating C2 was carried out by mixing of components and then applying them as a homogeneus layer onto a wood surface. The coating C3 was prepared by air spraying onto a 100% melamine paint layer over a wood surface.

**Sintering:** The coatings were left to air dry for a few hours.



| Composition      |      |      | Coating |               |    |            |  |
|------------------|------|------|---------|---------------|----|------------|--|
| (wt%)            | F2   | F3   |         | (wt%)         | C2 | <b>C</b> 3 |  |
| SiO <sub>2</sub> | 59.2 | 46.7 |         | F2            | 7  | 0          |  |
| $R_2O_3$         | 9.6  | 30.3 |         | F3            | 0  | 10         |  |
| $R_2O^*$         | 4.4  | 7.1  |         | Acrylic paint | 93 | 0          |  |

| Bacterial and viruses test |       |  |  |  |
|----------------------------|-------|--|--|--|
| Coating C2                 |       |  |  |  |
| E. Coli                    | 99.95 |  |  |  |
| S. Aureus                  | 99.94 |  |  |  |

| Bacterial and viruses test |       |  |  |  |  |
|----------------------------|-------|--|--|--|--|
| Coating C3                 |       |  |  |  |  |
| E. Coli                    | 99.99 |  |  |  |  |
| S. Aureus                  | 99.95 |  |  |  |  |

27.2 15.9 Melamine paint 0 RO \* **≈** 4 wt% Ag<sub>2</sub>O

**TGEV\*** 83.90

\*Transmissible gastroenteritis virus

TGEV\* 96.70

\*Transmissible gastroenteritis virus

### Conclusions

• New antiseptic substances based on silver-doped glasses were successfully developed.

. The incorporation of the silver-doped glasses was carried out in a glaze (ceramic route) and a varnish (organic coating route). In all conditions, silver was detected when EDX análisis were carried out on the surface of the coatings. Moreover, coating C3 had a higher biocidal and viricidal capacity than coating C2.

• The bactericidal and virucidal effect was effectively developed in all samples. Futhermore, reproducibility at laboratory and industrial scale was quite acceptable.

### Information

adriana.belda@itc.uji.es | mariajose.orts@itc.uji.es

### **Acknowledgements**

The work has been supported by the Valencian Innovation Agency (AVI) under the grant nº. INNEST/2021/19.



90

